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AC conductance of quantum wires with inelastic 
scattering: I 
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Institute of Physics, Czechoslovak Academy of Science, Na Slovance 2, CS-18040 Praha 8, 
Czechoslovakia 

Received 23 June 1989. in final form 6 October 1989 

Abstract. The influence of inelastic processes on the coherence in the semiballistic regime 
of mesoscopic transport is investigated by calculating the AC conductance of electrons in a 
single-channel quantum wire, coupled to a bath of longitudinal acoustic phonons. Numerical 
results illustrate the situation in GaAs structures. 

1. Introduction 

One of the outstanding experimentally established results in the area of mesoscopic 
transport is the quantisation of the DC conductance in very narrow constrictions fab- 
ricated in GaAsstructures [ 11. As the width of the constriction is varied, the conductance 
jumps by the universal value 2e2/h. This is interpreted in terms of quasi-one-dimensional 
electronic bands in the constriction, which define the conduction channels. Each band 
with a free Fermi surface yields an open channel whose contribution to the conductance 
is just 2e2/h, if the transport is purely ballistic. The spatial distribution of the applied 
electric field plays no role, only the total voltage. 

These results were derived theoretically in various ways [2]. The theory was also 
extended to finite frequencies [3,4]. Because of the fully quantal nature of this transport 
mode, the only adequate description is then the linear response theory, as represented 
by the Kubo formula. In [3,4], it was applied to an ideal quantum wire (QW). This is a 
structure infinitely extended in one direction, but having a uniform finite cross section. 
Electrons in the wire are independent and ballistic: there is no scattering at all, elastic 
or inelastic. The constriction is simulated by a finite interval, to which a longitudinal 
electric field is applied; it causes a coherent motion of the electrons in the whole wire. 

The linear response theory yields as a direct result the conductivity. In a homo- 
geneous quasi-iD wire, the useful quantity is a(x - x ' ,  U )  relating the local current j(x) 
at position x with the field 55 of frequency U acting at position x'. From this, we can 
calculate the empirically accessible conductance G defined by the power absorbed in the 
whole sample: 

d 

- 2  
G = G,.[%] = '11 dx dx' Re  a ( x - x ' ,  o ) % ( x ) % ( x ' )  (/dx%(x)) . (1) 

The conductance incorporates only the absorptive part of the conductivity and it is a 
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Figure 1. Quantum wire in an AC electric field. A microwave field incident on an opening in 
a shielding mask penetrates into the region of the QW just below as a longitudinal electric 
field acting on a finite interval L.  A current densityj(x) = JRe a(x  - x' )%(x' )  dx' is induced 
in the whole wire, but energy is absorbed only where the product j (x)S(x) is non-zero, that 
is in the intersection of the QW and the irradiated area between the dotted lines. The actual 
field distributionis not rectangular because of the diffraction on the diaphragm, as illustrated 
by the smooth plot at the bottom. 

functional of the spatial distribution of the field amplitude S(x) .  Figure 1 sketches a 
possible scheme of an experiment in which a quasi-static longitudinal electric field in the 
microwave frequency range can be applied to a finite portion of the QW. Outside the 
wire, the sample is an insulator: all energy dissipation comes from the intersection of 
the irradiated region of the system with the QW. 

An important result obtained in the coherent case is that at a finite frequency and 
for a homogeneous field %e-1wt acting on an interval of a length L ,  the one-channel 
conductance oscillates as 

sin2,(wL/2uF)/(w~/2vF)2. 
The DC limit does not depend on the field space variation. 

Presently, we shall address the question: How sensitive is this behaviour to inelastic 
processes that tend to violate the ideal phase coherence of the electronic waves? This 
will be analysed first on a simple parametrised model for the conductivity (9 2). As a 
next step towards a microscopic theory, we consider the inelastic scattering of electrons 
on longitudinal acoustic (LA) phonons (9 3), obtain an approximation for the con- 
ductivity (§ 4), and the temperature dependence of the conductance in this case (§ 5 ) .  

2. Relaxation-time model for the conduction in non-ideal quantum wires 

As a first step, we shall analyse (1) for a semiphenomenological model of conduction in 
one channel at zero electron temperature. With the assumption of a single relaxation 
time, the Kubo formula for the conductivity 0 becomes 

The relaxation time z and the Fermi velocity uF are parameters, and their combination 
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Figure 2. Single-channel conductance g in units of 
2e’h-I according to equation (2). The dimen- 
sionless frequency x = ( w / 2 n )  ( L / u F ) ;  dimen- 
sionless damping is L/ (uFr) .  

xuF defines the coherence length I,. Equation (2) contains, in addition to I,, another 
characteristic length 2nA, = 2 w F / w ,  the wavelength of an electron-hole pair with the 
excitation energy hw. The resulting conduction regime will depend on the interplay 
of these two lengths with one another and with the characteristic size of the spatial 
inhomogeneity of the electric field. As the simplest example, we choose the ‘mesa’ field, 
constant over a length L ,  considered already in [3, 41. The normalised conductance g 
resulting from equations (1) and (2) in this case is 

Gh 2 1 - eiC 
g = 7 2e = Re [ - 2 (1 + T)] 
~ = L ~ = L / A ,  + i L / I , = i j + i q  (36) 

and it depends on two dimensionless variables E, q given by the ratios of the characteristic 
lengths, which are called ‘frequency’ and ‘damping’ in figure 2. 

The DC conductance is obtained in the limit flu-. m. It appears in figure 2 as the 
leftmost curve running to the depth of the plot. In the coherent regime (zero damping, 
1, -. a), the conductance g-. 1 does not depend on L. This is the proper mesoscopic 
behaviour. For increasing damping, the Boltzmann equation limit is achieved, with the 
asymptotic form g - 2uFx/L, in which g is inversely proportional to L. Thus, it obeys 
Ohm’s law: the resistances of distant parts of the wire compose additively. 

The frequency dependence of the conductance for various dampings has an anal- 
ogous interpretation. The coherent limit is shown as the front profile in figure 2. The 
analytic form of the coherent g(w) is the 

sin2( wL/uF) / (  wL/uF)’ 

result [3, 41 mentioned already in 8 1. It starts from the DC value of 1 and its most 
prominent features are the predicted zeros at integer E ,  that is when L is a half-integer 
multiple of Am. The characteristic frequency 

0 0  = 216UF/L (4) 

corresponding, for a given L ,  to the first node at ij = 1, will be called the node frequency. 
As the damping is increased, g(w) undergoes a gradual transition from oscillatory 

shape to the asymptote of a monotonic bell-shaped curve tending to the Drude formula 
behaviour. 

Similar considerations are possible also for more complicated fields. We just mention 
that the basic conclusions for the mesa field are not altered if its edges are rounded [4]. 
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Another case may be a field periodically modulated in space, resulting in the resonance- 
like form of g(o).  We want to pay more attention to the field acting along two intervals 
L separated by a zero-field region of length d. This special field configuration should 
lead to a new interference effect: with the natural assumption that the electrical field in 
both intervals is coherent, the conductances of both intervals will interfere in a fashion 
analogous to double-slit diffraction in optics, provided the electron waves have coher- 
ence length sufficiently large, I ,  * d. This interference effect will be largely suppressed 
as 1, becomes comparable to d. This opens up a new possibility of direct observation of 
the degree of coherence, and of measuring l,, The double-mesa conductance is easily 
obtained as 

with given by (3b). The first term in the square brackets is a ‘single-slit’ conductance 
(3a); the other term describes the interference effect. It is damped by exp(-yd/l)  = 
exp( -d/lq), which gives a quantitative estimate for the interference quenching. The 
total conductance is normalised by a factor of 1/2: for d B I,, the resistance is an 
incoherent sum of the resistances of isolated intervals, each of which may still display an 
internal coherence. An illustration of these features will be given in § 4 using a quanti- 
tative estimate for t based on a microscopic theory. 

A concluding remark to this section may be that the approximation of a single 
relaxation time can be generalised to the case of several transport channels with indi- 
vidual uF values. Their contributions to the conductance are simply summed. 

3. Quantum wires modelling real structures in GaAs 

To obtain actual estimates of t, we shall consider a real situation in mesoscopic semi- 
conductor structures [ l]., 

3.1. Geometry of the Qw and model electronic structure 

As an example, we take the two-dimensional ( 2 ~ )  electron gas in a GaAs inversion layer. 
Additional gate electrodes with a narrow gap (constriction) create electrostatic barriers, 
which confine the electrons to a narrow, quasi-iD ‘wire’ with perfectly smooth ‘walls’. 
Characteristic parameters of such a system [ 1,5] are summarised in table 1. 

It should be pointed out that the wire is embedded inside a ‘bulk’ sample, considered 
in the following as if it were 3 ~ .  The geometry of the wire is such that it permits one to 
work in the effective-mass approximation. In addition, we assume a parabolic con- 
duction band, E(k) = tizk2/2m,. Then, for a homogeneous wire, we can write the elec- 
tronic wavefunction in a separable form 

where I # ~  defines the extent of the electron in the transverse direction. It depends on 
the confining potential. As the strength of the potential is increased, the wire becomes 
narrower and, consequently, the sub-bands move upwards, and the distances between 
the band edges increase. The number of open channels, i.e. the number of sub-bands 
crossed by the Fermi level E,, is related to the electron concentration and to the 
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Table 1. Basic parameters of the model GaAs wire. 

Material constants 
lattice spacing, a (nm) 0.5642 
effective mass (cond. band), m,/m, 
deformation potential, C (eV) 7.0 

0.067 

Geometrical characteristics 
extent of the electric field, L (pm) 10 

7 transverse extent of the wavefunction, R (nm) 

Characteristic energies 
Fermi level, EF (mev) 20 

node frequency, 0 0 ,  for L = 10 pm (GHz) 
corresponding energy, (meV) 0.11 

energy equivalent to T = 2 K (mev) 0.17 
27 

Other quantities 
Fermi velocity, uF (m SKI) 

velocity of sound, s (m SKI) 

2.7 X los 
5.22 X lo3  

confinement. We take a fixed Fermi level, as is the case in the experiment. Under this 
condition, the cross section of the wire is the variable quantity controlling its transport 
properties. We are now interested in the single-channel case, when the Fermi level lies 
between the first and second lowest sub-band edges. It is clear that single-channel 
transport takes place in wires whose transverse dimensions are comparable (in contrast 
to the multichannel case realised in a 'flat' conductor). We assume a cylindrical wire, 
and of the two commonly used confining potentials, box-shaped and parabolic, we select 
the latter one. Then the ground-state transverse wavefunction is 

(6b) qL cc e-'J.5(r1/W2 

with the characteristic extent R 6 (h2/m,E,)'/2. For the presently considered situation, 
R is estimated to be 7 nm. 

3.2. Interaction with  p phonons 

At very low temperatures, the electrons scatter on static imperfections and on acoustic 
phonons, and also by mutual collisions. Scattering on imperfections is excluded by 
the conditions of preparation. Electron-electron scattering is neglected in the present 
approach. The only remaining interaction of importance is the coupling to the LA 
phonons by the deformation-potential mechanism. 

The electrostatic potential confining the electrons to the wire does not influence the 
lattice vibrations, and the phonons are not confined to the wire. This 3~ nature of the 
phonon bath enables us to assume that it remains in its equilibrium state, which is not 
affected by the phonons emitted, absorbed by the electrons in the small volume of the 
wire. This makes the situation in the semiconductor structures different from the case 
of true metallic wires. The actual coupling between the ID electrons and the 3~ phonons 
is easily obtained by taking the matrix elements of the deformation potential, defined in 
the whole 3~ space, in the basis Yk of the electron eigenstates, which are, in the single- 
channel case, given by equations (6) and labelled by ID wavevectors k.  
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Figure 3. Imaginary part of the self-energy of elec- 
trons in GaAs moving in the ground channel and 
coupled by the deformation potential to LA 
phonons. Top panel: Im C for k = 0.2 nm-' as a 
function of energy around the Fermi level EF = 
20 meV.Temperatures: (-)0.3 K, ( - - - - - )2  K, 
(---) 4 K, (-----) 10 K. Bottom panel: the 
same in semi-logarithmic scale. 

The effect of the electron-phonon interaction on the equilibrium electronic structure 
is described by the electron self-energy X(k, E) .  For the electrons in the ground sub- 
band the self-energy is a scalar quantity depending on the ID wavevector k .  It is evaluated 
in the usual Migdal approximation [6], 

= ifiC2%9 (7)  
where (8 and 9 are the Green functions of the electrons and the phonons, respectively. 
Cis the deformation-potential coupling constant (C = 7 eV, table 1). The details of the 
evaluation of Z are postponed to a future publication [7]. The main results are as 
follows. For temperatures up to 10 K, all renormalisation effects are negligible. The k 
dependence of X is rather weak, at least for the important k-vectors around kF, as 
expected [6]. This substantially simplifies the formulation of the transport theory in the 
next section. The electron damping Im X(k ,  E - io) for k = 0.2 nm-' is shown in figure 
3 as a function of the energy for several temperatures T S 10 K. There, Im C never 
exceeds 0.03 meV. For low temperatures, this rather small quantity is further strongly 
reduced around the Fermi energy. This pronounced dip resembles the well known 
situation in metals [8] and confirms the validity of a ID Luttinger theorem at T+ 0. 

4. Linear response 

In this section we first derive the Kubo formula appropriate for the present problem and 
show how the formal structure of the expression for o(x, U) used in § 2 comes out. The 
microscopic transport theory yields the relation between the transport relaxation time 
z, used in § 2, and the imaginary part of the self-energy, obtained in § 3. The reasoning 
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in the ID case is rather analogous to the analysis made by Holstein [9] in his classical 
work on metals. 

We are studying the linear current response to a monochromatic electric field. The 
quantity needed in equation (1) for calculating the conductance is the absorptive part of 
the non-local conductivity a(x, U), which can be obtained as a Fourier transform 

of the susceptibility O ( K ,  w )  measuring the linear response to a single Fourier component 
g K  of the applied field, 

We use the vector gauge with the vector potential 

i 
w + io d ( x ,  t )  = - w, 9. 

The diamagnetic term is purely imaginary and does not contribute to the absorptive 
(real) part of the conductivity. A major simplification we introduce in the present work 
(but not in the forthcoming paper [7]) is to neglect the transport vertex in the Kubo 
formula for the ID conductivity, which becomes 

f i t  = f (E * fi0/2) %* = %(k * K/2, E * hw/2). ( I l b )  
Here uk = hk/meff is the electron velocity corresponding to the wavevector k ,  f ( u )  = 
(1 + exp[p(u - EF)]}- ' ,  and %(k,  E) is the one-electron spectral function. It should be 
pointed out that the incorporation of the vertex correction would lead to a replacement 
of one of the uk by a properly renormalised quantity. 

The spectral function Q(k,  E)  is the imaginary part of the equilibrium Green func- 
tion, 

%(k,  E) = Tz-'  Im[E * io - E(k) - C ( k ,  E * io)]-'. (12) 
It was noted already in § 3.2 that the k dependence of the self-energy C ( k ,  E )  is rather 
weak. We neglect it completely in order to simplify the integration over k and to obtain 
a compact expression for the conductivity. We also neglect the real part of C ( k ,  E),  
which is a smooth function of the energy close to the Fermi level, and only weakly 
modifies the bare dispersion law E(k). This means that we define a real quantity T ( E )  
replacing the self-energy in (12): 

Z ( k ,  E +- io) 4 TiT(E) r(E) 2 0. (13) 
The corresponding approximate form of the spectral function is 

r (E) /n  
[E  - ~ ( k ) ] *  + [T(E)]' ' 

%(k,  E) = 

This approximation turns the integrand in the Kubo formula into a rational function of 
k.  The integration over k can then be carried out explicitly. This is particularly easy if 



1576 I/ SpiEka et a1 

the Fermi energy is large compared to all other characteristic energies: kT,  hw, noo. 
This condition is valid in our case; it would fail for EF close to the sub-band edge, when 
all this approach would be doubtful from the beginning. Holstein [9] also reduced the 
Kubo formula along similar lines. The present ID case makes all steps much more 
transparent and simple. The very important feature common to Holstein’s and our 
procedures is that there are no conditions on the relative magnitude of the ‘small’ 
characteristic energies, including a parameter measuring the energy variation of the self- 
energy. In other words, no approximation of the quasi-particle type, requiring poles in 
%, appears here. 

The integration in (l la)  and (8) leads to the final result 

(15) 

with, 

&(E, U )  = [w + iz-l(E, w ) ] / u ( E )  

+(E, U )  = h - l [ r +  + r-) 

WF(E, 0) = c f -  -f+)lno* 

u ( E )  = (2E/mJ1’2 (16) 

(17) 

(18) 

and 

ri = r(E ? nw/2) .  

Finally, using the notation of equation ( l l b ) ,  

The familiar thermal weight function W,(E, w) is positive everywhere, but practically 
zero outside an interval around EF of width kT + hw EF. In the DC limit hw + 0, WF 
reduces to -df(E)/dE; for all w, its integral J d E  WF = 1. The Kubo formula (15) yields 
the total conductivity as an inhomogeneous mixture of partial conductivities having the 
form of the phenomenological conductivity (2). If a ( E ,  U )  did not depend on the energy 
we would have a single relaxation time and (15) would reduce to (2). The energy 
dependence enters the microscopic expression (16) for &(E, 0) through u(E) and 
through the r quantities. The velocity u(E)  depends, in fact, little on E ,  so that the 
energy dependence of the damping r ( E )  alone is responsible for the inhomogeneous 
broadening effect in the conductivity. The averaged quantity is the partial conductivity, 
not t. Therefore, a thermally averaged relaxation time (t) or a coherence length (I,) can 
be, strictly speaking, introduced only in an effective sense, depending on the selected 
observable quantity, e.g. the DC conductance., 

At w # 0, the relaxation time z ( E ,  U )  is given by a ‘Wigner’ combination of the 
dampings corresponding to the initial and final states connected by a quantum no. 
To see the nature of our z, consider the static case: z ( E ,  0) = h/2T(E).  This would 
correspond, in a quasi-particle approximation (T (E)  practically independent of E ) ,  to 
the particle lifetime, and to the transport relaxation time in a ID Boltzmann equation 
with the carrier back-scattering term omitted. This is consistent with the neglect of the 
transport vertex in the Kubo formula. 

We do not use any form of a quasi-particle approximation. If we did t i k ,  the Kubo 
formula (11) would not go beyond the phenomenological model, as mentioned above, 
and it would be equivalent to the quasi-classical Boltzmann-Drude-like theory. In the 
present case, we see from figure 3 that T ( E )  depends strongly on energy around EF so 
that it is essential to use the generalised theory and to work with the full Kubo formula. 
Scattering on low-temperature phonons differs, in this respect, from elastic scattering 
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Figure 4. Inverse relaxation time (equation (17), bottom panel) and the weighting function 
(equation (18)) defining the temperature dependence of the conductance (top panel). The 
weighting functions are normalised as described in the text. The temperatures are indicated 
in the same way as in figure 3. (a )  hw = 0.03 meV, ( b )  hw = 0.33 meV, (c) hw = 0.66 meV. 

on impurities, and also from quasi-elastic scattering by the phonons at higher tempera- 
tures. In both the latter cases, E, is not accompanied by a singularity of C. 

These general conclusions are illustrated for our GaAs wire in figure 4. For each 
temperature, the imaginary part of &(E, w )  is calculated from the self-energies of figure 
3. Above these plots, we draw the weighting function WF(E, w). It is normalised so that 
for all temperatures the values plotted are bounded by unity. The area below the curve 
for a given Tis then 4kBT. The three frequencies considered are: the highest frequency 
in figure 2, 3hw0 = 0.33 meV (cf table 1); a frequency 10 times less, which may be 
thought to represent the DC limit, and finally, a ‘high’ frequency 6hw0. In the DC case 
(figure 4(a)), the misalignment of the energy arguments is small, and the weight W, is 
rather close to the derivative of the Fermi distribution already for the lowest temperature 
considered. The inverse relaxation time 5z-l nearly coincides with twice the single- 
particle self-energy. These two effects in conjunction mean that the low-temperature 
DC conductivity corresponds to coherent transport. As the temperature is increased, the 
effective coherence length rapidly decreases because, on the one hand, the self-energy 
is nowhere really small and, on the other hand, the side-wings of the increasingly broad 
weight function sample the regions far from E, where r = /Im Cl is already not reduced 
by the Luttinger mechanism. 

The higher frequencies and kBT for the lowest temperatures are comparable, as is 
visualised by the shape of W,, basically a rectangle with thermally rounded edges in 
figures 3(b) and (c). Also the structure of Im a(E,  w )  is now changed: the low-tem- 
perature self-energy varies sharply enough in E to cause the doubling of the kink 
structure of the self-energy, as well as an increase of Im &(E, w )  around E,, where it 
never gets very close to zero. At  3hwo (-0.33 meV), the change in a(E,  w )  is still not 
very conspicuous, but the high frequency 6hw0 (-0.66 meV) is already comparable with 
the width of the self-energy dip around E,, and Im a -- r+ + r- becomes flat around 
E,. The degree of low temperature coherence thus decreases with increasing frequency. 
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Figure 5. Single-channel conductance gin units of 
2ezh-’ as a function of dimensionless frequency 
x = (o/2n) (L/uF) for various temperatures T ,  as 
obtained from equation (15) for self-energies of 
figure 3. The homogeneous longitudinal field acts 
in an interval L = 10pm. Value x = 1 corre- 
sponds approximately to 27 GHz for GaAs and, 
parameters given in table 1. 

At this and still higher frequencies, like in the far-infrared region, no coherence effects 
are expected. For higher temperatures, the frequency effects are, of course, less pro- 
nounced. 

5. Examples of conductance in GaAs QW 

This final section is devoted to calculating the AC conductance for our microscopic model 
of a GaAs QW; most parameters have already been introduced, more or less as dictated 
by the system itself. They are summarised in table 1. The only remaining free quantity, 
the characteristic length L discussed in detail in § 2, is selected to be 10 pm. This fixes 
the node frequency oo = 2nv0 to v o  = 27 GHz, a value corresponding to the 0.11 meV 
referred to already in the preceding section. 

In the following, we shall consider the two simple cases whose geometry and proper- 
ties were discussed on a phenomenological level in § 2, namely the mesa field and the 
double-mesa field. 

5.1. Conductance for the mesafield 

The frequency and temperature dependences of the conductance are summarised in 
figure 5 ,  which is arranged in the same way as figure 2. The frequency unit is fixed now 
to the specific value of w o  corresponding to 27 GHz, while the third axis measures the 
temperature rather than the dimensionless damping. Clearly, the effective damping 
increases with temperature and the transition from the mesoscopic oscillations to a 
monotonic Drude behaviour takes place similarly to figure 2. This similarity offers a 
procedure to define the effective coherent length Z,(T). For a fixed frequency, the 
conductance versus temperature dependence in figure 5 is mapped onto the conductance 
as a function of the damping in figure 2. The result of such transformation is shown in 
figure 6 .  The full curve relates to the DC conductance, the other one applies to the node 
frequency. In analysing these curves, it should first be observed that they are nearly 
identical except for small deviations at the lowest temperatures, indicating that this 1, is 
anobjective characteristicof the transport in awidefrequencyrange. Thisisin agreement 
with the discussion of frequency effects in figure 4. Secondly, we see that 1, decreases 
steeply with increasing temperature, which corresponds to the transition from the 
coherent to the incoherent transport mode in figure 5.  Quantitatively, this temperature 
dependence is given by a power law 1, - T-P. The full curve is fitted by p = 
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Figure 6 .  The temperature dependence of the 
coherence length I ,  obtained by fitting the results 
of figure 5 to equation ( 2 ) .  Full curve, DC case; 
broken curve, hw = 0.11 meV (first node fre- 
quency). 

2.526 - 0.216T - 0.316T2. This should be compared with the exponent ranging from 3 
to 4 in bulk metals [lo]. 

Finally, the magnitude of 1, appears to be of the order of micrometres or larger. 
These values are large, which could point to the importance of an additional scattering 
mechanism. However , we consider a single-channel case where the scattering efficiency 
of phonons is weakened by two factors: the very low number of final states, and the small 
overlap with the quasi-iD electron waves. The picture may easily change for, e.g., 10 
channels open. It should be noted that the inclusion of the vertex correction in the Kubo 
formula, physically meaning accounting for the back-scattering of electrons, is expected 
to enhance rather than to reduce the coherence length.. 

5.2. Conductance for the double mesafield 

The double mesa field, the other case considered on a phenomenological level in § 2, is 
illustrated in figure 7 by selected results obtained quantitatively on the basis of the 
microscopic theory. The conductance depends on several characteristic lengths in the 
system. The L value is fixed again as 10 pm. The variable length parameter in figure 7 is 
the gap size d .  Two vertical sequences are obtained for two different temperatures; 
the temperature effect can be interpreted in terms of I,. According to figure 6, the 
temperatures of 2 and 4 K adjust I, to something like 80 and 20 pm, respectively. There 
is a fast decline in the coherence between 2 and 4 K. For 2 K,  the interference oscillations 
predicted in 0 2 are pronounced, while for the higher temperature they are more or 
less washed out. In the case d S 1, ( d - +  CO, the bottom panels in figure 7), the total 
conductance is just one-half of the conductance in figure 5 corresponding to the single 
mesa case. 
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Figure 7. Single-channel conductance g in units of 2e'h-I as a function of dimensionless 
frequencyx = (o/2n) (L/uF).  The homogeneous longitudinal fieldactsin two intervals ( L  = 
10 pm) separated by a zero-field region of length d as indicated. Value x = 1 corresponds 
approximately to 27 GHz. Left part, T = 2 K; right part, T = 4 K. 

Figure 7 can be read also in the horizontal direction closely corresponding to a 
realistic experimental arrangement with a fixed geometry of the field and a variable 
temperature, which could serve for a direct measurement of the coherence length. 

6. Conclusions 

We studied the frequency-dependent conductance of a model quasi-iD conductor with 
the aim of describing the transition from the quantum ballistic to an incoherent transport 
regime caused by the inelastic phase breaking processes. For a relaxation-time model, 
the conductance was expressed analytically as a function of three characteristic lengths, 
namely the coherence length, the spatial extent of the exciting field and the wavelength 
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of the excited electron-hole pair. The formulae are illuminating for the basic under- 
standing of the effect of partial coherence. 

To describe these effects on a microscopic level, we considered a thin quantum wire 
in a GaAs structure in which the degenerate non-interacting carriers occupied only one 
sub-band and were coupled to the longitudinal acoustic phonons. With acceptable 
assumptions, the Kubo formula for the non-local conductivity was reduced to the form 
of thermally averaged elementary conductivities whose effective coherence lengths were 
related to the imaginary part of the electron self-energy. The coherent mode of the low- 
temperature conduction was thus explained by two simultaneous factors: a narrow area 
around the Fermi level for the thermal averaging, and the very small values of IIm 21 in 
this energy range caused by the selection rules for the phonon emission (Luttinger 
mechanism). At  higher temperatures, both the incoherence thermal averaging and the 
increased phonon concentration tend quickly to suppress the coherence. 

Relating the explicit results for the conductance to the phenomenological formulae, 
we were able to define the temperature-dependent coherence length. The dependence 
can be fitted by a power law. In a wide temperature range, the exponent is insensitive 
to the AC field frequency for which the fit is done. 

It should be pointed out that the single-channel model is exceptional in yielding very 
low scattering rates because of a small number of available final states in the one-channel 
case and a small overlap between electrons and phonons. This leads to the large I, in 
figure 6 .  The next step in the theory should be the multichannel case. Other important 
problems not considered in the present work are the full self-consistency and the 
inclusion of the transport vertices, which can both modify the behaviour of the con- 
ductance. Also electron-electron scattering is necessary for the theory to become real- 
istic. An improved theory will be detailed in a subsequent paper [7]. 
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